Homework 1 Sample Solutions

provided by Alex Grounds

Extra Exercise 1. Show that for a,b € (0, 00),

a
Ina—Inb=1In—-
na—In ny

Solution. Let’s define z = Ina — Inb. Exponentiating, we get e* = e™* " Using the facts
that e?® = e%? and e = L, we obtain

ea )

elna
ez — elna—lnb — 6lnae—lnb — )
elnb

Of course, since e” and Inx are inverse functions, it follows that

Ina
. e a

e = m = 5
Now all we have to do is take the natural log of both sides:

a
Ine* =z =1n-.

b

But since we defined z = Ina — In b, we have exactly what we wanted!
lna—lnb:z:ln%

as claimed. Note that we have implicitly used that e* is a one-to-one function here. After
all, if it were not, it would not have a well-defined inverse function (but it does, namely
Inx). O

Extra Exercise 2. Show that

—tan 'z = !
dx 1422

Here are the steps. Do each one of them: (a), (b), (¢) are unrelated to each other, but
they all get combined in part (d) to prove the result.

(a) Suppose that f and g are two differentiable functions that are inverses of each other.

Show that 1

/
g\r)=
= o)
(if f'(g(x)) # 0, of course. Question: could f'(g(x)) be 0?7 Think of an example or why
not)




(b) Show that

— tanz = sec’ T,

dx

where recall that, by definition secx =

cosz’

(c) Show that
sec’*(tan™'x) = 1 + 27,

(d) Combine (a), (b) and (c) to draw the conclusion.

Solution.

(a) Consider the function f(g(z)). Since f and g are inverse functions, we have f(g(z)) =
(this is the definition of inverse functions). If we differentiate each side of this equation,
we get the following:

d o oy 4
/@) = flg(@)g'(x) = v =1
The first equality is simply the chain rule. Since we have assumed that f'(g(z)) # 0, we

can divide by it to obtain
1

9 = 5@y

as claimed.

Note that it looks like this only works in the special case that f'(g(z)) # 0. But this is
not actually a special case at all. After all, we have that

flg(x))g'(x) =1

(as we showed above). Thus, if f'(g(z)) were 0, then we would have

f(g(x)g (x) = 0g'(x) =0 = 17!

which is obviously a contradiction.

NOTE BY MONA:
Note that if I had not specified that f and g are both differentiable the above argument
would break.

Think of the following example: f(z) = z®: this is a continuous differentiable func-

tion with continuous derivative f’(x) = 3z* and continuous inverse g(x) = /x. Then
f'(g(x)) = 3(/x)?, which is clearly 0 for z = 0.



Obviously, in this example we could not have f'(g(z))g’(x) = 1. Where the argument
above that shows that f’(g(x))¢’(z) = 1 breaks is the application of the chain rule: the
chain rule only holds for the points x for which both g and f are differentiable. In this
example, g is not differentiable at =z = 0.

However, in the question above you were able to apply the chain rule to f(g(z)) and
conclude that f'(g(z))¢’(xz) = 1, but that’s only because we assumed that both f and g
are differentiable for any .

We wish to compute % tan x. Using the quotient rule, we have that

d d sinr  cosw-cosx —sinz - (—sinz) cos’z +sin’z 1 9
—tanr = — = 5 = 5 = 5 = sec” .
dz dxr cosx cos®x cos®x cos?

Here we used the trigonometric identity sin? z 4+ cos?z = 1 for any z.

Let’s set y = tan~! 2. By definition, this means that tany = z. We want to show that
secly =1+ 2%

Note that
) siny  cos?y iny cos? y
tan“y +1 = + we used tany = and 1 =
cos?y  cos?y cosy cos?y
_ sin*y+cos’y
N cos?y
1
= 5 since sin?y + cos®y = 1 for any y
cos?y
= sec’y

So we have shown that
tan’y + 1 = sec?y

for all y. Now, if we simply plug ¥ = tan~! z into this equation, we get
tan’y + 1 = tan®(tan"'z) + 1 = (tan(tan*(2)))* + 1 = 2> + 1
= sec?y = sec?(tan"' 1)
as claimed. Here, we used that tanz and tan™' z are inverse functions (by definition).
Putting all of this together, we get that

LIRS 10 1 by (b) 1 by (c) 1
dx (tan)’(tan~!(z)) sec2(tan~!(z)) 1+ a2

as claimed.



Exercise 7.1 #32. Use substitution to evaluate

/ sin® x cos x dz.
Solution. We make the substitution v = sinx, du = cosz dx, so we get
.3 3 L L.y
sinxcosxdr = [ u’du= Zu +C = Zsm x+C.
m

Exercise 7.1 #42. Assuming g(x) is a continuous function whose derivative ¢'(x) is also
continuous, use substitution to evaluate

Solution. We make the substitution u = g(x), du = ¢'(z)dx (this works because g(x) is
continuous with a continuous derivative). Thus, we get

g'(z) = du — tan—(u — tan Yol
/—[g(m)]2+1d / tan"!(u) + C = tan"!(g(x)) + C.

Here we used Extra Exercise #2 to recognize tan™"(u) as an antiderivative of —. O



