
Homework 1 Sample Solutions

provided by Alex Grounds

Extra Exercise 1. Show that for a, b ∈ (0,∞),

ln a− ln b = ln
a

b

Solution. Let’s define z = ln a− ln b. Exponentiating, we get ez = eln a−ln b. Using the facts
that ea+b = eaeb and e−a = 1

ea
, we obtain

ez = eln a−ln b = eln ae− ln b =
eln a

eln b
.

Of course, since ex and ln x are inverse functions, it follows that

ez =
eln a

eln b
=

a

b
.

Now all we have to do is take the natural log of both sides:

ln ez = z = ln
a

b
.

But since we defined z = ln a− ln b, we have exactly what we wanted!

ln a− ln b = z = ln
a

b

as claimed. Note that we have implicitly used that ex is a one-to-one function here. After
all, if it were not, it would not have a well-defined inverse function (but it does, namely
lnx).

Extra Exercise 2. Show that

d

dx
tan−1 x =

1

1 + x2

Here are the steps. Do each one of them: (a), (b), (c) are unrelated to each other, but
they all get combined in part (d) to prove the result.

(a) Suppose that f and g are two differentiable functions that are inverses of each other.
Show that

g′(x) =
1

f ′(g(x))

(if f ′(g(x)) 6= 0, of course. Question: could f ′(g(x)) be 0? Think of an example or why
not)
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(b) Show that
d

dx
tanx = sec2 x,

where recall that, by definition secx = 1
cosx

.

(c) Show that
sec2(tan−1 x) = 1 + x2.

(d) Combine (a), (b) and (c) to draw the conclusion.

Solution.

(a) Consider the function f(g(x)). Since f and g are inverse functions, we have f(g(x)) = x
(this is the definition of inverse functions). If we differentiate each side of this equation,
we get the following:

d

dx
f(g(x)) = f ′(g(x))g′(x) =

d

dx
x = 1

The first equality is simply the chain rule. Since we have assumed that f ′(g(x)) 6= 0, we
can divide by it to obtain

g′(x) =
1

f ′(g(x))

as claimed.

Note that it looks like this only works in the special case that f ′(g(x)) 6= 0. But this is
not actually a special case at all. After all, we have that

f ′(g(x))g′(x) = 1

(as we showed above). Thus, if f ′(g(x)) were 0, then we would have

f ′(g(x))g′(x) = 0g′(x) = 0 = 1?!

which is obviously a contradiction.

NOTE BY MONA:
Note that if I had not specified that f and g are both differentiable the above argument
would break.

Think of the following example: f(x) = x3: this is a continuous differentiable func-
tion with continuous derivative f ′(x) = 3x2 and continuous inverse g(x) = 3

√
x. Then

f ′(g(x)) = 3( 3
√
x)2, which is clearly 0 for x = 0.
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Obviously, in this example we could not have f ′(g(x))g′(x) = 1. Where the argument
above that shows that f ′(g(x))g′(x) = 1 breaks is the application of the chain rule: the
chain rule only holds for the points x for which both g and f are differentiable. In this
example, g is not differentiable at x = 0.

However, in the question above you were able to apply the chain rule to f(g(x)) and
conclude that f ′(g(x))g′(x) = 1, but that’s only because we assumed that both f and g
are differentiable for any x.

(b) We wish to compute d
dx

tanx. Using the quotient rule, we have that

d

dx
tanx =

d

dx

sinx

cosx
=

cosx · cosx− sinx · (− sinx)

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

Here we used the trigonometric identity sin2 x + cos2 x = 1 for any x.

(c) Let’s set y = tan−1 x. By definition, this means that tan y = x. We want to show that
sec2 y = 1 + x2.

Note that

tan2 y + 1 =
sin2 y

cos2 y
+

cos2 y

cos2 y
we used tan y =

sin y

cos y
and 1 =

cos2 y

cos2 y

=
sin2 y + cos2 y

cos2 y

=
1

cos2 y
since sin2 y + cos2 y = 1 for any y

= sec2 y

So we have shown that
tan2 y + 1 = sec2 y

for all y. Now, if we simply plug y = tan−1 x into this equation, we get

tan2 y + 1 = tan2(tan−1 x) + 1 = (tan(tan−1(x)))2 + 1 = x2 + 1

= sec2 y = sec2(tan−1 x)

as claimed. Here, we used that tan x and tan−1 x are inverse functions (by definition).

(d) Putting all of this together, we get that

d

dx
tan−1 x

by (a)
=

1

(tan)′(tan−1(x))

by (b)
=

1

sec2(tan−1(x))

by (c)
=

1

1 + x2

as claimed.
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Exercise 7.1 #32. Use substitution to evaluate∫
sin3 x cosx dx.

Solution. We make the substitution u = sinx, du = cosx dx, so we get∫
sin3 x cosx dx =

∫
u3 du =

1

4
u4 + C =

1

4
sin4 x + C.

Exercise 7.1 #42. Assuming g(x) is a continuous function whose derivative g′(x) is also
continuous, use substitution to evaluate∫

g′(x)

[g(x)]2 + 1
dx.

Solution. We make the substitution u = g(x), du = g′(x) dx (this works because g(x) is
continuous with a continuous derivative). Thus, we get∫

g′(x)

[g(x)]2 + 1
dx =

∫
du

u2 + 1
= tan−1(u) + C = tan−1(g(x)) + C.

Here we used Extra Exercise #2 to recognize tan−1(u) as an antiderivative of 1
u2+1

.
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